Need help to convert a LSTM model

I am trying to convert a LSTM model to HEF format, but I get this error

[info] Translation started on ONNX model model
[info] Restored ONNX model model (completion time: 00:00:00.02)
[info] Extracted ONNXRuntime meta-data for Hailo model (completion time: 00:00:00.08)
[info] Simplified ONNX model for a parsing retry attempt (completion time: 00:00:00.15)
Traceback (most recent call last):
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 235, in translate_onnx_model
    parsing_results = self._parse_onnx_model_to_hn(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 316, in _parse_onnx_model_to_hn
    return self.parse_model_to_hn(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 367, in parse_model_to_hn
    fuser = HailoNNFuser(converter.convert_model(), net_name, converter.end_node_names)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/translator.py", line 83, in convert_model
    self._create_layers()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py", line 40, in _create_layers
    self._add_direct_layers()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py", line 122, in _add_direct_layers
    self._layer_callback_from_vertex(vertex)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_translator.py", line 460, in _layer_callback_from_vertex
    consumed_vertices = self._create_lstm_layer(vertex)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_translator.py", line 2041, in _create_lstm_layer
    forward_params, backward_params, direction, consumed_vertices = vertex.get_lstm_info()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_graph.py", line 1330, in get_lstm_info
    info_dict[param] = const.parse_raw_data()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_graph.py", line 620, in parse_raw_data
    parsed_data = numpy_helper.to_array(self._info.attribute[0].t)
IndexError: list index (0) out of range

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/azureuser/projects/misc/HEF_Convertor/hef_convertor.py", line 9, in <module>
    hn, npz = runner.translate_onnx_model(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_common/states/states.py", line 16, in wrapped_func
    return func(self, *args, **kwargs)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/runner/client_runner.py", line 1158, in translate_onnx_model
    parser.translate_onnx_model(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 276, in translate_onnx_model
    parsing_results = self._parse_onnx_model_to_hn(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 316, in _parse_onnx_model_to_hn
    return self.parse_model_to_hn(
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py", line 367, in parse_model_to_hn
    fuser = HailoNNFuser(converter.convert_model(), net_name, converter.end_node_names)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/translator.py", line 83, in convert_model
    self._create_layers()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py", line 40, in _create_layers
    self._add_direct_layers()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py", line 122, in _add_direct_layers
    self._layer_callback_from_vertex(vertex)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_translator.py", line 460, in _layer_callback_from_vertex
    consumed_vertices = self._create_lstm_layer(vertex)
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_translator.py", line 2041, in _create_lstm_layer
    forward_params, backward_params, direction, consumed_vertices = vertex.get_lstm_info()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_graph.py", line 1330, in get_lstm_info
    info_dict[param] = const.parse_raw_data()
  File "/home/azureuser/miniconda3/envs/Hailo_convert/lib/python3.10/site-packages/hailo_sdk_client/model_translator/onnx_translator/onnx_graph.py", line 620, in parse_raw_data
    parsed_data = numpy_helper.to_array(self._info.attribute[0].t)
IndexError: list index (0) out of range

This is the code I used to convert

from hailo_sdk_client import ClientRunner

model_name = 'LSTM'

chosen_hw_arch = "hailo8l"
onnx_path = f"{model_name}.onnx"

runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_onnx_model(
		onnx_path,
)
hailo_model_har_name = f"{model_name}.har"
runner.save_har(hailo_model_har_name)

#Compiling HAR to HER(Hailo Executable File)
hailo_model_har_name = f"{model_name}.har"
runner = ClientRunner(har=hailo_model_har_name)
hef = runner.compile()

file_name = f"{model_name}.hef"

with open(file_name, "wb") as f:
    f.write(hef)

Here is the model I built

import torch
import torch.nn as nn

class LSTM(nn.Module):
    def __init__(self, input_dim=51, hidden_dim=128, num_layers=2, dropout=0.2):
        super(FallDetectionLSTM, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        
        self.input_bn = nn.BatchNorm1d(input_dim)
        
        self.lstm = nn.LSTM(
            input_size=input_dim,
            hidden_size=hidden_dim,
            num_layers=num_layers,
            batch_first=True,
            bidirectional=True,
            dropout=dropout if num_layers > 1 else 0
        )
        
        self.attention = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.Tanh(),
            nn.Linear(hidden_dim, 1),
            nn.Softmax(dim=1)
        )
        
        self.fc_layers = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.BatchNorm1d(hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.BatchNorm1d(hidden_dim // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim // 2, 1)
        )

    def attention_net(self, lstm_output):
        attention_weights = self.attention(lstm_output)
        context_vector = attention_weights * lstm_output
        context_vector = torch.sum(context_vector, dim=1)
        return context_vector

    def forward(self, x):
        batch_size, seq_length, _ = x.size()
        x = x.view(-1, self.input_dim)
        x = self.input_bn(x)
        x = x.view(batch_size, seq_length, -1)
        
        lstm_out, (hidden, cell) = self.lstm(x)
        
        attention_output = self.attention_net(lstm_out)
        
        output = self.fc_layers(attention_output)
        
        return torch.sigmoid(output)