DFC_2_Model_Optimization_Tutorial
Error while trying to runner.optimize(calib_dataset_lq) entered the code and the following error occurred.
File /local/workspace/hailo_virtualenv/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/script_parser/model_modifications_commands.py:296, in NormalizationCommand.validate_command(self, layer_scope_from_hn)
292 invalid_layer_names = [
293 layer_name for layer_name in self._normalization_layers if layer_name in layer_scope_from_hn
294 ]
295 if invalid_layer_names:
→ 296 raise AllocatorScriptParserException(
297 f"Given layer names {invalid_layer_names} exist in the model. Please use different names",
298 )
AllocatorScriptParserException: Given layer names [‘ERNet_M3_02-2_LOL_v1/normalization1’] exist in the model. Please use different names
How should I fix it…
The runner.load_model_script (all) is below.
‘ERNet_M3_02-2_LOL_v1/Normalization1’ is included
[info] Loading model script commands to ERNet_M3_02-2_LOL_v1 from string
OrderedDict([(‘name’, ‘ERNet_M3_02-2_LOL_v1’),
(‘net_params’,
OrderedDict([(‘version’, ‘1.0’),
(‘stage’, ‘HN’),
(‘clusters_placement’, []),
(‘clusters_to_skip’, ),
(‘output_layers_order’,
[‘ERNet_M3_02-2_LOL_v1/conv22’]),
(‘is_transformer’, False),
(‘transposed_net’, False),
(‘net_scopes’, [‘ERNet_M3_02-2_LOL_v1’]),
(‘lora_adapters’, )])),
(‘layers’,
OrderedDict([(‘ERNet_M3_02-2_LOL_v1/input_layer1’,
OrderedDict([(‘type’, ‘input_layer’),
(‘input’, ),
(‘output’,
[‘ERNet_M3_02-2_LOL_v1/conv1’]),
(‘input_shapes’, [[-1, 256, 256, 3]]),
(‘output_shapes’,
[[-1, 256, 256, 3]]),
(‘original_names’, [‘input’]),
(‘compilation_params’, {}),
(‘quantization_params’, {}),
(‘transposed’, False),
(‘engine’, ‘nn_core’),
(‘io_type’, ‘standard’)])),
(‘ERNet_M3_02-2_LOL_v1/conv1’,
OrderedDict([(‘type’, ‘conv’),
(‘input’,
[‘ERNet_M3_02-2_LOL_v1/input_layer1’]),
(‘output’,
[‘ERNet_M3_02-2_LOL_v1/layer_normalization1’,
‘ERNet_M3_02-2_LOL_v1/ew_add2’]),
(‘input_shapes’, [[-1, 256, 256, 3]]),
(‘output_shapes’,
[[-1, 128, 128, 24],
[-1, 128, 128, 24]]),
(‘original_names’,
[‘/enhancer/embedding/Conv’,
‘/enhancer/encoder_layers.0.0/Transpose’]),
(‘compilation_params’, {}),
(‘quantization_params’, {}),
(‘params’,
OrderedDict([(‘kernel_shape’,
[4, 4, 3, 24]),
(‘strides’,
[1, 2, 2, 1]),
(‘dilations’,
[1, 1, 1, 1]),
(‘padding’,
‘SAME_TENSORFLOW’),
(‘groups’, 1),
(‘layer_disparity’, 1),
(‘input_disparity’, 1),
(‘batch_norm’, False),
(‘elementwise_add’,
False),
(‘activation’,
‘linear’)]))])),
(‘ERNet_M3_02-2_LOL_v1/layer_normalization1’,
OrderedDict([(‘type’, ‘layer_normalization’),
(‘input’,
[‘ERNet_M3_02-2_LOL_v1/conv1’]),
(‘output’,
[‘ERNet_M3_02-2_LOL_v1/normalization1’]),
(‘input_shapes’,
[[-1, 128, 128, 24]]),
(‘output_shapes’,
[[-1, 128, 128, 24]]),
(‘original_names’,
[‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/ReduceMean’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Sub’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Pow’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/ReduceMean_1’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Add’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Sqrt’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Div’]),
(‘compilation_params’, {}),
(‘quantization_params’, {}),
(‘params’,
OrderedDict([(‘reduce_axes’, [3]),
(‘rms_norm’, False),
(‘groups’, 1)]))])),
(‘ERNet_M3_02-2_LOL_v1/normalization1’,
OrderedDict([(‘type’, ‘normalization’),
(‘input’,
[‘ERNet_M3_02-2_LOL_v1/layer_normalization1’]),
(‘output’,
[‘ERNet_M3_02-2_LOL_v1/format_conversion1’]),
(‘input_shapes’,
[[-1, 128, 128, 24]]),
(‘output_shapes’,
[[-1, 128, 128, 24]]),
(‘original_names’,
[‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Mul’,
‘/enhancer/encoder_layers.0.0/blocks.0.0/norm/Add_1’]),
(‘compilation_params’, {}),
(‘quantization_params’, {}),
(‘params’,
OrderedDict([(‘elementwise_add’,
False),
(‘activation’,
‘linear’)]))])),
(‘ERNet_M3_02-2_LOL_v1/format_conversion1’,
OrderedDict([(‘type’, ‘format_conversion’),
(‘input’,
[‘ERNet_M3_02-2_LOL_v1/normalization1’]),
(‘output’,
[‘ERNet_M3_02-2_LOL_v1/conv2’,
‘ERNet_M3_02-2_LOL_v1/conv3’,
‘ERNet_M3_02-2_LOL_v1/conv4’]),
(‘input_shapes’,
[[-1, 128, 128, 24]]),
(‘output_shapes’,
[[-1, 1, 16384, 24],
[-1, 1, 16384, 24],
[-1, 1, 16384, 24]]),
(‘original_names’,
[‘/enhancer/encoder_layers.0.0/blocks.0.0/fn/Reshape’]),
(‘compilation_params’,
{‘hw_layer_type_list’: [‘lcu’]}),
(‘quantization_params’, {}),
(‘params’,
OrderedDict([(‘conversion_type’,
‘spatial_reshape’),
(‘groups’, 1),
(‘spatial_reshape_sizes’,
[1, 16384, 24]),
(‘input_windows’,
[1, 1, 1]),
(‘output_windows’,
[1, 1, 1])]))])),