Conversion error from yolov8n.onnx to HEF file

Hello, thank you again for viewing my question. It has been bothering me for several days. I have successfully converted my custom model to yolov8n.onnx.

Environment:

  • Ubuntu: 20.04 LTS
  • Hailo Dataflow Compiler: 3.28.0
  • Hailo Model Zoo: 2.12.0

In the virtual environment, I executed the command:

hailomz compile --ckpt yolov8n.onnx --hw-arch hailo8 --calib-path download/train/images/ --yaml /home/kun/hailo/lib/python3.8/site-packages/hailo_model_zoo/cfg/networks/yolov8n.yaml --classes 2

My yolov8n.yaml:

base:

  • base/yolov8.yaml
    postprocessing:
    device_pre_post_layers:
    nms: true
    hpp: true
    network:
    network_name: yolov8n
    paths:
    network_path:
  • yolov8n.onnx
    alls_script: /home/kun/hailo/lib/python3.8/site-packages/hailo_model_zoo/cfg/alls/hailo8/base/yolov8n.alls
    parser:
    nodes:
  • null

My yolov8n.alls:

quantization_param([conv42, conv53, conv63], force_range_out=[0.0, 1.0])
normalization1 = normalization([0.0, 0.0, 0.0], [255.0, 255.0, 255.0])
change_output_activation(conv42, sigmoid)
change_output_activation(conv53, sigmoid)
change_output_activation(conv63, sigmoid)
performance_param(compiler_optimization_level=max)
model_optimization_flavor(optimization_level=1, compression_level=0, batch_size=2)
post_quantization_optimization(finetune, policy=enabled, learning_rate=0.0001, epochs=20, batch_size=8, dataset_size=1112)
nms_postprocess(“/home/kun/hailo/lib/python3.8/site-packages/hailo_model_zoo/cfg/postprocess_config/yolov8n_nms_config.json”, meta_arch=yolov8, engine=cpu)

My yolov8n_nms_config.json:

{
“anchors”: [
640
],
“max_proposals_per_class”: 100,
“classes”: 2,
“regression_length”: 16,
“background_removal”: false,
“background_removal_index”: 0,
“bbox_decoders”: [
{
“name”: “yolov8n/bbox_decoder41”,
“stride”: 8,
“reg_layer”: “yolov8n/conv41”,
“cls_layer”: “yolov8n/conv42”
},
{
“name”: “yolov8n/bbox_decoder52”,
“stride”: 16,
“reg_layer”: “yolov8n/conv52”,
“cls_layer”: “yolov8n/conv53”
},
{
“name”: “yolov8n/bbox_decoder62”,
“stride”: 32,
“reg_layer”: “yolov8n/conv62”,
“cls_layer”: “yolov8n/conv63”
}
]
}

I have reviewed many solutions from experienced engineers and tried various command scripts and combinations, but I still encounter the following problem. Could you help me figure out where I went wrong?

I sincerely hope I can complete this project just like everyone else.

File "/tmp/autograph_generated_filev_oi1uta.py", line 67, in tf__yolov8_decoding_call
decoded_bboxes = ag
.converted_call(ag__.ld(tf).expand_dims, (ag__.ld(decoded_bboxes),), dict(axis=2), fscope)
ValueError: Exception encountered when calling layer “yolov8_nms_postprocess” (type HailoPostprocess).

in user code:

File "/home/kun/hailo/lib/python3.8/site-packages/hailo_model_optimization/acceleras/hailo_layers/base_hailo_none_nn_core_layer.py", line 43, in call  *
    outputs = self.call_core(inputs, training, **kwargs)
File "/home/kun/hailo/lib/python3.8/site-packages/hailo_model_optimization/acceleras/hailo_layers/hailo_postprocess.py", line 113, in call_core  *
    inputs,
File "/home/kun/hailo/lib/python3.8/site-packages/hailo_model_optimization/acceleras/hailo_layers/hailo_postprocess.py", line 148, in bbox_decoding_and_nms_call  *
    decoded_bboxes, detection_score = self.yolov8_decoding_call(inputs)
File "/home/kun/hailo/lib/python3.8/site-packages/hailo_model_optimization/acceleras/hailo_layers/hailo_postprocess.py", line 355, in yolov8_decoding_call  *
    decoded_bboxes = tf.expand_dims(decoded_bboxes, axis=2)

ValueError: Tried to convert 'input' to a tensor and failed. Error: None values not supported.

Call arguments received by layer “yolov8_nms_postprocess” (type HailoPostprocess):
• inputs=[‘tf.Tensor(shape=(None, 80, 80, 64), dtype=float32)’, ‘tf.Tensor(shape=(None, 80, 80, 4), dtype=float32)’, ‘tf.Tensor(shape=(None, 40, 40, 64), dtype=float32)’, ‘tf.Tensor(shape=(None, 40, 40, 4), dtype=float32)’, ‘tf.Tensor(shape=(None, 20, 20, 64), dtype=float32)’, ‘tf.Tensor(shape=(None, 20, 20, 4), dtype=float32)’]
• training=False
• kwargs=<class ‘inspect._empty’>

Hi @kun2917,
From first glance, it seems that you config file is wrong.
What you post here is this:

{
“anchors”: [
640
],
“max_proposals_per_class”: 100,
“classes”: 2,
“regression_length”: 16,
“background_removal”: false,
“background_removal_index”: 0,
“bbox_decoders”: [
{
“name”: “yolov8n/bbox_decoder41”,
“stride”: 8,
“reg_layer”: “yolov8n/conv41”,
“cls_layer”: “yolov8n/conv42”
},
{
“name”: “yolov8n/bbox_decoder52”,
“stride”: 16,
“reg_layer”: “yolov8n/conv52”,
“cls_layer”: “yolov8n/conv53”
},
{
“name”: “yolov8n/bbox_decoder62”,
“stride”: 32,
“reg_layer”: “yolov8n/conv62”,
“cls_layer”: “yolov8n/conv63”
}
]
}

While it actually should be this:

{
	"nms_scores_th": 0.2,
	"nms_iou_th": 0.7,
	"image_dims": [
		640,
		640
	],
	"max_proposals_per_class": 100,
	"classes": 2,
	"regression_length": 16,
	"background_removal": false,
	"background_removal_index": 0,
	"bbox_decoders": [
		{
			"name": "bbox_decoder41",
			"stride": 8,
			"reg_layer": "conv41",
			"cls_layer": "conv42"
		},
		{
			"name": "bbox_decoder52",
			"stride": 16,
			"reg_layer": "conv52",
			"cls_layer": "conv53"
		},
		{
			"name": "bbox_decoder62",
			"stride": 32,
			"reg_layer": "conv62",
			"cls_layer": "conv63"
		}
	]
}

You have the field “anchors” that is not in the base template plus is missing the second dimension.
Can you please try with the updated config like I showed here?

Regards,

Thank you for taking the time to review my issue and assist me in resolving it.
Below are my three key files and one execution command. Based on your assistance,
I have made the following corrections to the file content:
1、yolov8n.yaml:

base:

  • base/yolov8.yaml
    postprocessing:
    device_pre_post_layers:
    nms: true
    hpp: true
    network:
    network_name: yolov8n
    paths:
    network_path:

2、yolov8n.alls

quantization_param([conv42, conv53, conv63], force_range_out=[0.0, 1.0])
normalization1 = normalization([0.0, 0.0, 0.0], [255.0, 255.0, 255.0])
change_output_activation(conv42, sigmoid)
change_output_activation(conv53, sigmoid)
change_output_activation(conv63, sigmoid)
performance_param(compiler_optimization_level=max)
nms_postprocess(“/home/kun/hailo/lib/python3.8/site-packages/hailo_model_zoo/cfg/postprocess_config/yolov8n_nms_config.json”, meta_arch=yolov8, engine=cpu)

3、yolov8n_nms_config.json

{
“nms_scores_th”: 0.2,
“nms_iou_th”: 0.7,
“image_dims”: [
640,
640
],
“max_proposals_per_class”: 100,
“classes”: 80,
“regression_length”: 16,
“background_removal”: false,
“background_removal_index”: 0,
“bbox_decoders”: [
{
“name”: “bbox_decoder41”,
“stride”: 8,
“reg_layer”: “conv41”,
“cls_layer”: “conv42”
},
{
“name”: “bbox_decoder52”,
“stride”: 16,
“reg_layer”: “conv52”,
“cls_layer”: “conv53”
},
{
“name”: “bbox_decoder62”,
“stride”: 32,
“reg_layer”: “conv62”,
“cls_layer”: “conv63”
}
]
}

==========
In the Ubuntu virtual environment on a Windows 11 system,
I used the following command:

hailomz compile --ckpt yolov8n.onnx --hw-arch hailo8l 
--calib-path train/images/ --yaml /../networks/yolov8n.yaml --classes 80 --performance

I have successfully compiled the HEF file.
However, when I transfer the HEF file to the Raspberry Pi 5 and use the command hailortcli parse-hef to check my HEF,
I encountered the following error:

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ hailortcli parse-hef kun_home/yolov8n_2408140505.hef
[HailoRT] [error] CHECK failed - HEF file length does not match
[HailoRT] [error] CHECK_SUCCESS failed with status=HAILO_INVALID_HEF(26)
[HailoRT] [error] Failed parsing HEF file
[HailoRT] [error] Failed creating HEF
[HailoRT] [error] CHECK_SUCCESS failed with status=HAILO_INVALID_HEF(26)
[HailoRT CLI] [error] CHECK_SUCCESS failed with status=HAILO_INVALID_HEF(26) - Failed to parse HEF

After researching, I found that this issue might be related to a compatibility problem between the HailoRT and DFC versions.
I have attached my data below:

pi@raspberrypi:~ $ hailortcli fw-control identify
Executing on device: 0000:01:00.0
Identifying board
Control Protocol Version: 2
Firmware Version: 4.17.0 (release,app,extended context switch buffer)
Logger Version: 0
Board Name: Hailo-8
Device Architecture: HAILO8L
Serial Number: HLDDLBB241601856
Part Number: HM21LB1C2LAE
Product Name: HAILO-8L AI ACC M.2 B+M KEY MODULE EXT TMP

pi@raspberrypi:~ $ gst-inspect-1.0 hailotools
Plugin Details:
Name hailotools
Description hailo tools plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailotools.so
Version 3.28.2
License unknown
Source module gst-hailo-tools
Binary package gst-hailo-tools
Origin URL https://hailo.ai/

hailoaggregator: hailoaggregator - Cascading
hailocounter: hailocounter - postprocessing element
hailocropper: hailocropper
hailoexportfile: hailoexportfile - export element
hailoexportzmq: hailoexportzmq - export element
hailofilter: hailofilter - postprocessing element
hailogallery: Hailo gallery element
hailograytonv12: hailograytonv12 - postprocessing element
hailoimportzmq: hailoimportzmq - import element
hailomuxer: Muxer pipeline merging
hailonv12togray: hailonv12togray - postprocessing element
hailonvalve: HailoNValve element

pi@raspberrypi:~ $ gst-inspect-1.0 hailo
Plugin Details:
Name hailo
Description hailo gstreamer plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailo.so
Version 1.0
License unknown
Source module hailo
Binary package GStreamer
Origin URL http://gstreamer.net/

hailodevicestats: hailodevicestats element
hailonet: hailonet element
synchailonet: sync hailonet element

3 features:
Âą- 3 elements

However, when I run the default example using the command:
python basic_pipelines/detection.py --labels-json resources/barcode-labels.json
–hef resources/yolov8s-hailo8l-barcode.hef --input /dev/video0
It executes correctly.

This contradiction is confusing me.
Could you help me resolve this issue?
Also, could you please check the files I attached for any errors?
I also noticed that the exported HEF file is approximately 4MB. Is this correct?

Our equipment requires extensive use of this system suite,
and we are determined to overcome this challenge to use it in the future.
I sincerely appreciate your help and support.

Hi @kun2917,
What DFC\Model Zoo version did you use for compiling the model?
The yolov8s-hailo8l-barcode.hef is probably compiled for this specific TAPPAS and HailoRT version, so it make sense that it would work.

Regards,

Thank you again for your response.

Attached are the version details of the DFC and Model Zoo that I compiled:

Name: hailo-dataflow-compiler
Version: 3.28.0
Summary: Hailo Dataflow Compiler
Home-page: https://hailo.ai/
Author: Hailo team
Author-email: contact@hailo.ai
License:
Location: /home/kun/hailo/lib/python3.8/site-packages

Name: hailo-model-zoo
Version: 2.12.0
Summary: Hailo machine learning utilities and examples
Home-page: https://hailo.ai/
Author: Hailo team
Author-email: hailo_model_zoo@hailo.ai
License: MIT

May I ask again, are the settings in the three files (yaml, alls, json) correct?
Honestly, I’m not confident in myself.
Thank you once again.

My compilation environment is:

  • Windows 11 operating system
  • Ubuntu 20.04 LTS
  • Hailo Dataflow Compiler: 3.28.0
  • Hailo Model Zoo: 2.12.0
  • Python version:Python 3.8.10

Hi @kun2917,
It seems that the three files are correct, but since you are using an older version for the HailoRT & TAPPAS, this might be the reason for the error you get when trying to run hailortcli.

Please try to update the HailoRT version to 4.18.0 and test, it should be OK once you upgrade it.

Regards,

Thank you very much for your help.
I searched the forum for information on updating Hailo RT 4.18.
I followed these steps:

$ sudo rm /lib/modules/6.6.31+rpt-rpi-2712/kernel/drivers/media/pci/hailo/hailo_pci.ko.xz
$ sudo apt install dkms
$ sudo dpkg -i hailort-pcie-driver_4.18.0_all.deb
$ sudo reboot
$ sudo dpkg -i hailort_4.18.0_arm64.deb
$ sudo reboot
$ sudo modprobe -r hailo_pci
$ sudo modprobe hailo_pci force_desc_page_size=4096

I successfully updated Hailo RT to version 4.18.
Here’s my updated information:

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ lspci | grep Hailo
0000:01:00.0 Co-processor: Hailo Technologies Ltd. Hailo-8 AI Processor (rev 01)
(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ ^C
(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ hailortcli fw-control identify
Executing on device: 0000:01:00.0
Identifying board
Control Protocol Version: 2
Firmware Version: 4.18.0 (release,app,extended context switch buffer)
Logger Version: 0
Board Name: Hailo-8
Device Architecture: HAILO8L
Serial Number: HLDDLBB241601856
Part Number: HM21LB1C2LAE
Product Name: HAILO-8L AI ACC M.2 B+M KEY MODULE EXT TMP

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ gst-inspect-1.0 hailotools
Plugin Details:
Name hailotools
Description hailo tools plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailotools.so
Version 3.28.2
License unknown
Source module gst-hailo-tools
Binary package gst-hailo-tools
Origin URL https://hailo.ai/

hailoaggregator: hailoaggregator - Cascading
hailocounter: hailocounter - postprocessing element
hailocropper: hailocropper
hailoexportfile: hailoexportfile - export element
hailoexportzmq: hailoexportzmq - export element
hailofilter: hailofilter - postprocessing element
hailogallery: Hailo gallery element
hailograytonv12: hailograytonv12 - postprocessing element
hailoimportzmq: hailoimportzmq - import element
hailomuxer: Muxer pipeline merging
hailonv12togray: hailonv12togray - postprocessing element
hailonvalve: HailoNValve element
hailooverlay: hailooverlay - overlay element
hailoroundrobin: Input Round Robin element
hailostreamrouter: Hailo Stream Router
hailotileaggregator: hailotileaggregator
hailotilecropper: hailotilecropper - Tiling
hailotracker: Hailo object tracking element

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ gst-inspect-1.0 hailo
Plugin Details:
Name hailo
Description hailo gstreamer plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailo.so
Version 1.0
License unknown
Source module hailo
Binary package GStreamer
Origin URL http://gstreamer.net/

hailodevicestats: hailodevicestats element
hailonet: hailonet element
synchailonet: sync hailonet element

I then re-executed:

hailomz compile --ckpt yolov8n.onnx --hw-arch hailo8l --calib-path train/images/ --yaml /…/networks/yolov8n.yaml --classes 80 --performance

I successfully fixed the previous errors.
This is a significant step forward, but I encountered a new issue.
The error message is quite lengthy, so I’m only providing the relevant parts.
I would appreciate your continued assistance. Thank you very much.

Error Information:

(Hailo Detection App:2206): GStreamer-WARNING **: 08:45:25.749: Failed to load plugin ‘/lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailo.so’: libhailort.so.4.17.0: cannot open shared object file: No such file or directory

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.749: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: cannot retrieve class for invalid (unclassed) type ‘’
self.pipeline = Gst.parse_launch(pipeline_string)

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: g_object_class_find_property: assertion ‘G_IS_OBJECT_CLASS (class)’ failed
self.pipeline = Gst.parse_launch(pipeline_string)

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_object_unref: assertion ‘object != NULL’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: g_type_class_unref: assertion ‘g_class != NULL’ failed
self.pipeline = Gst.parse_launch(pipeline_string)
gst_parse_error: no property “hef-path” in element “hailonet” (2)

Another important progress is that I re-examined the HEF file.
It was successful.

Architecture HEF was compiled for: HAILO8L
Network group name: yolov8n, Multi Context - Number of contexts: 3
Network name: yolov8n/yolov8n
VStream infos:
Input yolov8n/input_layer1 UINT8, NHWC(640x640x3)
Output yolov8n/yolov8_nms_postprocess FLOAT32, HAILO NMS(number of classes: 80, maximum bounding boxes per class: 100, maximum frame size: 160320)
Operation:
Op YOLOV8
Name: YOLOV8-Post-Process
Score threshold: 0.200
IoU threshold: 0.70
Classes: 80
Cross classes: false
Max bboxes per class: 100
Image height: 640
Image width: 640

1 Like

Hi Omer,

Thank you for your help. Although I successfully compiled the HEF file, I encountered a new issue when executing the HEF file on the Raspberry Pi 5. Could you please assist me again?

But I encountered a new issue.
The error message is quite lengthy, so I’m only providing the relevant parts.
I would appreciate your continued assistance. Thank you very much.
Error Information:

(Hailo Detection App:2206): GStreamer-WARNING **: 08:45:25.749: Failed to load plugin ‘/lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailo.so’: libhailort.so.4.17.0: cannot open shared object file: No such file or directory

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.749: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: cannot retrieve class for invalid (unclassed) type ‘’
self.pipeline = Gst.parse_launch(pipeline_string)

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_element_factory_get_element_type: assertion ‘GST_IS_ELEMENT_FACTORY (factory)’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: g_object_class_find_property: assertion ‘G_IS_OBJECT_CLASS (class)’ failed
self.pipeline = Gst.parse_launch(pipeline_string)

(Hailo Detection App:2206): GStreamer-CRITICAL **: 08:45:25.750: gst_object_unref: assertion ‘object != NULL’ failed
/home/pi/hailo-rpi5-examples/basic_pipelines/hailo_rpi_common.py:157: Warning: g_type_class_unref: assertion ‘g_class != NULL’ failed
self.pipeline = Gst.parse_launch(pipeline_string)
gst_parse_error: no property “hef-path” in element “hailonet” (2)

Hi @kun2917,
What example\app did you try to run when you got this error?

Regards,

Hey @kun2917,

Which version of HailoRT are you using on your RPI5? This issue is often due to version compatibility. Please make sure you’re using either HailoRT 4.17 with DFC 3.27 and tappas or HailoRT 4.18 with DFC 3.28, along with the latest Tappas.

Please check out this topic : gst-inspect-1.0 hailo: No such element or plugin 'hailo'

Thank you, Omer and Omria.
I really appreciate both of you for helping me resolve the issue.
Here’s the information from my RPI5.
I followed the official tutorial for installation. Is there a conflict between the versions?
hailotools: 3.28
Device Architecture: HAILO8L: 4.18.0
hailo gstreamer plugin: 1.0

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ gst-inspect-1.0 hailotools
Plugin Details:
Name hailotools
Description hailo tools plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailotools.so
Version 3.28.2
License unknown
Source module gst-hailo-tools
Binary package gst-hailo-tools
Origin URL https://hailo.ai/

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ hailortcli fw-control identify
Executing on device: 0000:01:00.0
Identifying board
Control Protocol Version: 2
Firmware Version: 4.18.0 (release,app,extended context switch buffer)
Logger Version: 0
> Board Name: Hailo-8
> Device Architecture: HAILO8L
Serial Number: HLDDLBB241601856
Part Number: HM21LB1C2LAE
Product Name: HAILO-8L AI ACC M.2 B+M KEY MODULE EXT TMP

(venv_hailo_rpi5_examples) pi@raspberrypi:~/hailo-rpi5-examples $ gst-inspect-1.0 hailo
Plugin Details:
> Name hailo
> Description hailo gstreamer plugin
Filename /lib/aarch64-linux-gnu/gstreamer-1.0/libgsthailo.so
Version 1.0
License unknown
Source module hailo
Binary package GStreamer
Origin URL http://gstreamer.net/

hailodevicestats: hailodevicestats element
hailonet: hailonet element
synchailonet: sync hailonet element

3 features:
Âą- 3 elements

Could you please upgrade to TAPPAS version 3.29 or 3.29.1? These versions have been tested and confirmed to work with HailoRT 4.18.

After upgrading, please follow these steps:

  1. Re-run the version check to confirm the update was successful.
  2. Try running your application again.

If you encounter any errors during this process, please provide the full error message. This will help us troubleshoot more effectively.

Thank you, Omria and Omer.
Sure, I will follow your suggestion to update to TAPPAS version 3.29 or 3.29.1. However, could you please guide me on how to update TAPPAS?

Before this, I had read some information on the forum about updating, but it was quite scattered and there didn’t seem to be a unified method for updating.

Could you provide the correct update method, download files, commands, etc., so that all the engineers in the forum can have a clear direction?

Your help will be the driving force for all of us to move forward. Once again, thank you, and thank you all for your assistance.

Dear Omria,

I hope this message finds you well.

I would like to express my gratitude once again for your previous suggestions. I am now ready to follow your instructions to update to TAPPAS version 3.29 or 3.29.1. However, I still have some questions regarding the specific update steps, and I haven’t been able to find a unified method for the update, so I would like to seek your guidance once more.

If you could provide detailed instructions on the update process, including the download files and commands to use, it would be incredibly helpful for our team. We are all eagerly awaiting your valuable advice, as it will greatly accelerate our progress.

If you have the time, could you please assist in providing this information? I would greatly appreciate your help.

Thank you again for your previous support, and I look forward to your reply.

Best regards!

Hi Omria,

I went through the forum materials again and found.
https://community.hailo.ai/t/upgrade-hailort-to-4-18-on-rpi/2678

When I followed the instructions provided, I was able to complete the installation successfully. However, I encountered the same issue as others. The following message appeared:

gst-inspect-1.0 hailotools
No such element or plugin ‘hailotools’
gst-inspect-1.0 hailo
No such element or plugin ‘hailo’

Could you please advise on how to resolve this issue?

Try this

Hey @kun2917

I provided a full details on how to upgrade to HailoRT 4.18 in Upgrade HailoRT to 4.18 on RPI - #19

We also provide the full tappas installation guide in here : tappas/docs/installation/manual-install.rst at v3.29.1 ¡ hailo-ai/tappas ¡ GitHub