Compile CLIP with the DFC

I am currently working on the optimization part of the compilation with the following code.

# General imports used throughout the tutorial
# file operations
import json
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import numpy as np
import tensorflow as tf
from IPython.display import SVG
from matplotlib import patches
from matplotlib import pyplot as plt
from PIL import Image
from tensorflow.python.eager.context import eager_mode
from pathlib import Path

# import the hailo sdk client relevant classes
from hailo_sdk_client import ClientRunner, InferenceContext

# preprocessing
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, PILToTensor
import torch

try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC

harPath = Path("hailoDFC/Harfiles")
datafolder = Path("../Data")
input_folder = datafolder / 'data'
calibFolder = datafolder / "calibData"

model_name = "RN50"

def _convert_image_to_rgb(image):
    return image.convert("RGB")

def transform(n_px):
    """
    n_px: input resolution of the network
    """
    return Compose([
        Resize(n_px, interpolation=BICUBIC),
        CenterCrop(n_px),
        _convert_image_to_rgb,
        ToTensor(),
        # Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])

# First, we will prepare the calibration set. Resize the images to the correct size and crop them.
def preproc(image, output_height=224, output_width=224, resize_side=256):
    """imagenet-standard: aspect-preserving resize to 256px smaller-side, then central-crop to 224px"""
    with eager_mode():
        h, w = image.shape[0], image.shape[1]
        scale = tf.cond(tf.less(h, w), lambda: resize_side / h, lambda: resize_side / w)
        resized_image = tf.compat.v1.image.resize_bilinear(tf.expand_dims(image, 0), [int(h * scale), int(w * scale)])
        cropped_image = tf.compat.v1.image.resize_with_crop_or_pad(resized_image, output_height, output_width)

        return tf.squeeze(cropped_image)

preprocess = transform(224)
images_list = [img_name for img_name in os.listdir(input_folder) if os.path.splitext(img_name)[1] == ".jpg"]

calib_dataset = np.zeros((len(images_list), 224, 224, 3))
for idx, img_name in enumerate(sorted(images_list)):
    img = Image.open(os.path.join(input_folder, img_name))
    # img = PILToTensor(img)
    img_preproc = preprocess(img)
    img_transposed = np.transpose(img_preproc.numpy(),(1,2,0))
    calib_dataset[idx, :, :, :] = img_transposed

np.save(calibFolder / f"calib_set_{model_name}.npy", calib_dataset)

# Second, we will load our parsed HAR from the Parsing Tutorial

hailo_model_har_name = f"{model_name}_hailo_model.har"
hailo_model_har_path = harPath / hailo_model_har_name
assert os.path.isfile(hailo_model_har_path), "Please provide valid path for HAR file"
runner = ClientRunner(har=str(hailo_model_har_path),hw_arch="hailo8")
# By default it uses the hw_arch that is saved on the HAR. For overriding, use the hw_arch flag.

# Now we will create a model script, that tells the compiler to add a normalization on the beginning
# of the model (that is why we didn't normalize the calibration set;
# Otherwise we would have to normalize it before using it)

# Batch size is 8 by default
alls = "normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.375])\n" # From tutorial

# Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), # From Lia
# alls = "normalization1 = normalization([0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711])\n"

# Load the model script to ClientRunner so it will be considered on optimization
runner.load_model_script(alls)

# Call Optimize to perform the optimization process
runner.optimize(calib_dataset)

# Save the result state to a Quantized HAR file
quantized_model_har_path = f"{model_name}_quantized_model.har"
runner.save_har(quantized_model_har_path)

The execution stops at the line where `runner.optimize(calib_dataset)gets called.
The error is:

in _minimize_slsqp
    slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw,
ValueError: failed to initialize intent(inout) array -- expected elsize=8 but got 4

I suspect it is because of the matmul operation in the onnx graph.
I saw someone is adressing the same problem in this post:
Problems optimizing (quantization) dinov2 - ONNX to HEF
Is there a fix for this or is there a bug in my code?