Hi, I’m managed to convert the llama 3 8b model into ONNX format.
But trying to convert the Model into Hailo’s Format returns the following error:
UnsupportedModelError: Unexpected zero dimension in shape [-1, 0] at input layer layer (translated from input_ids)
I have debuged this day and night without sleep for 3 days. It would be really great if someone could help me, thanks.
Here’s the terminal output:
[info] Translation started on ONNX model model
[warning] Large model detected. The graph may contain either a large number of operators, or weight variables with a very large capacity.
[warning] Translation time may be a bit long, and some features may be disabled (e.g. model augmentation, retry simplified model, onnx runtime hailo model extraction, etc.).
[info] Restored ONNX model model (completion time: 00:00:16.69)
[warning] ONNX shape inference failed: Unsupported dynamic shape([0, 0]) found on input node input_ids. Please use net_input_shapes, see documentation for additional info.
UnsupportedModelError Traceback (most recent call last)
Cell In[2], line 1
----> 1 client_runner.translate_onnx_model(“./M1-8B-v0.1-ONNX/model.onnx”)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_common/states/states.py:16, in allowed_states..wrap..wrapped_func(self, *args, **kwargs)
12 if self._state not in states:
13 raise InvalidStateException(
14 f"The execution of {func.name} is not available under the state: {self._state.value}",
15 )
—> 16 return func(self, *args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/runner/client_runner.py:1158, in ClientRunner.translate_onnx_model(self, model, net_name, start_node_names, end_node_names, net_input_shapes, augmented_path, disable_shape_inference, disable_rt_metadata_extraction, net_input_format, **kwargs)
1115 “”"
1116 DFC API for parsing an ONNX model. This creates a runner with loaded HN (model) and
1117 parameters.
(…)
1155
1156 “”"
1157 parser = Parser()
→ 1158 parser.translate_onnx_model(
1159 model=model,
1160 net_name=net_name,
1161 start_node_names=start_node_names,
1162 end_node_names=end_node_names,
1163 net_input_shapes=net_input_shapes,
1164 augmented_path=augmented_path,
1165 disable_shape_inference=disable_shape_inference,
1166 disable_rt_metadata_extraction=disable_rt_metadata_extraction,
1167 net_input_format=net_input_format,
1168 **kwargs,
1169 )
1171 return self._finalize_parsing(parser.return_data)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py:232, in Parser.translate_onnx_model(self, model, net_name, start_node_names, end_node_names, net_input_shapes, augmented_path, disable_shape_inference, disable_rt_metadata_extraction, net_input_format, **kwargs)
230 except Exception as e:
231 if large_model_detected or long_model_detected:
→ 232 raise e from None
234 try:
235 simplified_model, is_valid = onnxsim.simplify(onnx_model, skip_fuse_bn=True)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py:220, in Parser.translate_onnx_model(self, model, net_name, start_node_names, end_node_names, net_input_shapes, augmented_path, disable_shape_inference, disable_rt_metadata_extraction, net_input_format, **kwargs)
217 onnx.save_model(onnx_model, augmented_path)
219 try:
→ 220 parsing_results = self._parse_onnx_model_to_hn(
221 onnx_model=onnx_model,
222 net_name=valid_net_name,
223 start_node_names=start_node_names,
224 end_node_names=end_node_names,
225 net_input_shapes=net_input_shapes,
226 disable_shape_inference=disable_shape_inference,
227 net_input_format=net_input_format,
228 )
230 except Exception as e:
231 if large_model_detected or long_model_detected:
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py:300, in Parser._parse_onnx_model_to_hn(self, onnx_model, net_name, start_node_names, end_node_names, net_input_shapes, disable_shape_inference, net_input_format, **kwargs)
297 except Exception as e:
298 self._logger.warning(f"ONNX shape inference failed: {e!s}")
→ 300 return self.parse_model_to_hn(
301 onnx_model,
302 None,
303 net_name,
304 start_node_names,
305 end_node_names,
306 nn_framework=NNFramework.ONNX,
307 output_shapes=output_shapes,
308 net_input_format=net_input_format,
309 **kwargs,
310 )
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/sdk_backend/parser/parser.py:351, in Parser.parse_model_to_hn(self, model, values, net_name, start_node_names, end_node_names, nn_framework, output_shapes, net_input_format, rename_layers_by_blocks)
348 else:
349 raise BackendRuntimeException(f"Unsupported NN framework {nn_framework}")
→ 351 fuser = HailoNNFuser(converter.convert_model(), net_name, converter.end_node_names)
352 hailo_nn = fuser.convert_model()
353 hailo_nn.validate_stage(HnStage.HN)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/model_translator/translator.py:79, in HailoNNConverter.convert_model(self)
77 self._validate_model_params()
78 self._validate_bn_ops_in_training()
—> 79 self._create_layers()
80 self._add_layers_connections()
81 self._layers_graph.set_names_and_indices()
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py:32, in EdgeNNConverter._create_layers(self)
30 def _create_layers(self):
31 self._visited_states = {}
—> 32 self._add_input_layers()
33 self._update_vertices_info()
34 self._add_direct_layers()
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_client/model_translator/edge_nn_translator.py:70, in EdgeNNConverter._add_input_layers(self)
65 if rank not in [2, 3, 4]:
66 raise UnsupportedModelError(
67 f"Input layer {vertex.name} has an input tensor with {rank} dimensions, which is not supported "
68 “by the Dataflow Compiler. Only 2-4 dimensional tensors are allowed”,
69 )
—> 70 layer = InputLayer.create(vertex.name, input_shapes)
71 self._add_layer(layer, has_edge=False)
72 self._vertices_to_layers[vertex] = layer
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_common/hailo_nn/hn_layers/io_layers.py:110, in InputLayer.create(cls, original_name, output_shapes)
108 layer = cls()
109 layer.add_original_name(original_name)
→ 110 layer.output_shapes = output_shapes
111 for shape in layer.output_shapes:
112 shape[0] = -1
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_common/hailo_nn/hn_layers/layer.py:487, in Layer.output_shapes(self, output_shapes)
485 self._output_shapes =
486 for shape in output_shapes:
→ 487 self._append_output_shape(shape)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_common/hailo_nn/hn_layers/layer.py:461, in Layer._append_output_shape(self, output_shape)
460 def _append_output_shape(self, output_shape):
→ 461 self._check_valid_shape(output_shape)
462 self.append_output_shape(output_shape)
File /opt/conda/lib/python3.10/site-packages/hailo_sdk_common/hailo_nn/hn_layers/layer.py:454, in Layer._check_valid_shape(self, shape)
449 raise UnsupportedModelError(
450 f"Unexpected dimension in shape {shape} at {self.full_name_msg}. "
451 f"Dimension must be of type ‘int’ or ‘long’“,
452 )
453 if any(dim == 0 for dim in shape):
→ 454 raise UnsupportedModelError(f"Unexpected zero dimension in shape {shape} at {self.full_name_msg}”)
UnsupportedModelError: Unexpected zero dimension in shape [-1, 0] at input layer layer (translated from input_ids)
