Please find the logs below. It is up to epoch 13 in ~2 days.
Thanks for looking into this.
yolo task=detect mode=train model=yolov8n.pt data=dataset.yaml epochs=100 imgsz=640 batch=12
New ultralytics · PyPI available Update with ‘pip install -U ultralytics’
Ultralytics YOLOv8.2.79 Python-3.11.2 torch-2.4.0 CPU (Cortex-A76)
engine/trainer: task=detect, mode=train, model=yolov8n.pt, data=dataset.yaml, epochs=100, time=None, patience=100, batch=12, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train10, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train10
Overriding model.yaml nc=80 with nc=3
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]
11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]
14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
22 [15, 18, 21] 1 751897 ultralytics.nn.modules.head.Detect [3, [64, 128, 256]]
Model summary: 225 layers, 3,011,433 parameters, 3,011,417 gradients, 8.2 GFLOPs
Transferred 319/355 items from pretrained weights
Freezing layer ‘model.22.dfl.conv.weight’
/home/rpi/work/helmet/lib/python3.11/site-packages/ultralytics/engine/trainer.py:271: FutureWarning: torch.cuda.amp.GradScaler(args...)
is deprecated. Please use torch.amp.GradScaler('cuda', args...)
instead.
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
train: Scanning /home/rpi/work/helmet/datasets/dataset/labels.cache… 5000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s]
val: Scanning /home/rpi/work/helmet/datasets/dataset/labels.cache… 5000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s]
Plotting labels to runs/detect/train10/labels.jpg…
optimizer: ‘optimizer=auto’ found, ignoring ‘lr0=0.01’ and ‘momentum=0.937’ and determining best ‘optimizer’, ‘lr0’ and ‘momentum’ automatically…
optimizer: AdamW(lr=0.001429, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.00046875), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to runs/detect/train10
Starting training for 100 epochs…
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
1/100 0G 1.52 1.688 1.216 48 640: 100%|██████████| 417/417 [2:32:25<00:00, 21.93s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:08:35<00:00, 19.69s/it]
all 5000 25502 0.912 0.496 0.558 0.328
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
2/100 0G 1.448 1.164 1.186 70 640: 100%|██████████| 417/417 [2:45:06<00:00, 23.76s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:06:52<00:00, 19.20s/it]
all 5000 25502 0.897 0.517 0.575 0.334
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
3/100 0G 1.433 1.061 1.181 82 640: 100%|██████████| 417/417 [2:47:54<00:00, 24.16s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:10:39<00:00, 20.28s/it]
all 5000 25502 0.902 0.493 0.557 0.3
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
4/100 0G 1.418 1.011 1.178 59 640: 100%|██████████| 417/417 [2:36:40<00:00, 22.54s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:09:09<00:00, 19.86s/it]
all 5000 25502 0.919 0.528 0.589 0.359
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
5/100 0G 1.395 0.9661 1.174 88 640: 100%|██████████| 417/417 [2:40:22<00:00, 23.08s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:09:17<00:00, 19.89s/it]
all 5000 25502 0.93 0.551 0.606 0.373
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
6/100 0G 1.374 0.9265 1.163 68 640: 100%|██████████| 417/417 [2:39:58<00:00, 23.02s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:11:39<00:00, 20.57s/it]
all 5000 25502 0.934 0.55 0.605 0.373
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
7/100 0G 1.362 0.9035 1.156 91 640: 100%|██████████| 417/417 [2:54:14<00:00, 25.07s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:13:28<00:00, 21.09s/it]
all 5000 25502 0.928 0.562 0.61 0.386
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
8/100 0G 1.362 0.8804 1.147 67 640: 100%|██████████| 417/417 [2:55:44<00:00, 25.29s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:12:19<00:00, 20.76s/it]
all 5000 25502 0.933 0.564 0.612 0.385
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
9/100 0G 1.342 0.8569 1.148 40 640: 100%|██████████| 417/417 [3:00:41<00:00, 26.00s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:11:05<00:00, 20.41s/it]
all 5000 25502 0.941 0.561 0.618 0.387
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
10/100 0G 1.338 0.8457 1.139 33 640: 100%|██████████| 417/417 [2:46:12<00:00, 23.92s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:12:17<00:00, 20.75s/it]
all 5000 25502 0.939 0.573 0.621 0.399
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
11/100 0G 1.316 0.8324 1.133 42 640: 100%|██████████| 417/417 [2:52:32<00:00, 24.83s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:12:30<00:00, 20.82s/it]
all 5000 25502 0.942 0.573 0.624 0.393
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
12/100 0G 1.327 0.8214 1.14 49 640: 100%|██████████| 417/417 [3:05:05<00:00, 26.63s/it]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 209/209 [1:11:21<00:00, 20.49s/it]
all 5000 25502 0.939 0.567 0.624 0.389
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
13/100 0G 1.325 0.8227 1.13 70 640: 61%|██████ | 253/417 [2:03:43<2:26:17, 53.52s/it]