No GPU for training error

Hello I am getting this message when training in the model zoo:

  return torch._C._cuda_getDeviceCount() > 0
Using CPU

I believe it’s a Cuda version conflict:

sam@terminus:~/hailo_model_zoo/training/yolov5$ nvidia-smi
Fri May  9 10:41:56 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.51.03              Driver Version: 576.28         CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060        On  |   00000000:01:00.0  On |                  N/A |
|  0%   37C    P8             19W /  170W |     749MiB /  12288MiB |      4%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+
sam@terminus:~/hailo_model_zoo/training/yolov5$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed_Jul_22_19:09:09_PDT_2020
Cuda compilation tools, release 11.0, V11.0.221
Build cuda_11.0_bu.TC445_37.28845127_0

I am using WSL2 Ubuntu-20.04 with Cuda 11.0.
Do I also need to install an older driver on the Windows host?

The Dataflow Compiler usage on Windows using WSL2, does not currently support GPU. You can find this in the Hailo Dataflow Compiler User Guide.

I recommend using the Hailo AI Software Suite Docker on Ubuntu 20.0.4 or 22.04 directly. This provides the easiest installation and upgrades.

Thanks for replying, if I dual boot Linux and Windows instead of using WSL2, will that fix this problem?

Yes, we work with dual boot on our machines as well.

Do you dual boot off the same SSD or would you recommend separate ones?

I have systems configured with both approaches, and both work well.

On the machine with two SSDs, I physically removed the Windows SSD during the initial Linux installation to prevent any changes to its boot sector. I now switch between operating systems using the UEFI/BIOS boot menu. Otherwise, the system will always boot into the last selected OS. I can also remove one of the SSDs and the OS on the other will just boot fine.

On the machine with a single SSD, I rely on the GRUB boot menu to select the operating system at startup.

thank you for your help

I’m dual booting linux now, I’ll see how the training goes tonight.
btw I noticed this on the model zoo readme, is it out of date?