Issues with creating Hailo files for custom model

Hi, as the title suggests I’m trying to convert an onnx file to one Hailo can process (.hef)

I’ve looked through many guides, and I keep running into different issues.

In one of the guides I’m following on YouTube it instructs to use the following command

hailomz compile yolov8s --ckpt=YingCans_Best.onnx --hw-arch hailo8l --calib-path train/images --classes 2 --performance

this results in the error shown in image

I’ve seen other users on the board with similar issues and responses without a through guide.
Running hailomz optimize reports layer yolov8n/conv41 doesn’t have one output layer - Community Projects - Hailo Community

if anyone can help, it would be greatly appreciated

error
but I keep running into issues.

In the alls file hailo_model_zoo/hailo_model_zoo/cfg/alls/generic/yolov8s.alls at master · hailo-ai/hailo_model_zoo · GitHub, please remove the part “…/…/postprocess_config/yolov8s_nms_config.json” from nms_postprocess() command.
It should be:
nms_postprocess(meta_arch=yolov8, engine=cpu)

if you are using hailo model zoo prior to version 2.14, you may need to edit the end nodes of the yaml file: hailo_model_zoo/hailo_model_zoo/cfg/networks/yolov8s.yaml at master · hailo-ai/hailo_model_zoo · GitHub
But for version 2.14 and onwards, you don’t need to. The hailomz tool automatically discovers the start and end nodes.

Thank you, it got me a bit further but still resulted in an error.

“ValueError: failed to initialize intent(inout) array – expected elsize=8 but got 4”

hailo_model_optimization.acceleras.utils.acceleras_exceptions.AccelerasUnsupportedError: layer yolov8n/matmul4 does not support shift delta. To overcome this issue you should force larger range at the inputs of the layer using command quantization_param([layer_name], force_range_in=[range_min, range_max], force_range_index=index) current range of input 0 is [0.001, 0.020] and input 1 is [-3.650, 5.073].You should increase the multiplication of these ranges by a factor of 3.237, e.g. you can apply factor of sqrt(3.237) to both inputs:
quantization_param([yolov8n/matmul4], force_range_in=[0.002, 0.036], force_range_index=0)
quantization_param([yolov8n/matmul4], force_range_in=[-6.567, 9.127], force_range_index=1)

this as well

It could be an issue with the calibration dataset. Is your dataset made of RGB images in jpeg, png, format ?

yes, they are RGB, png images

Can you add these lines to the alls file:

quantization_param([yolov8n/matmul4], force_range_in=[0.002, 0.036], force_range_index=0)
quantization_param([yolov8n/matmul4], force_range_in=[-6.567, 9.127], force_range_index=1)

and try again ?