I have a custom YOLOv8s Pose model. I trained and annotated it using roboflow and ultralytics. It is for drone detection with one class for a drone and 4 keypoints - one for each motor.
I am running these commands to compile my model.
hailomz parse --yaml 24_config.yaml --ckpt best_320_v2.onnx
hailomz optimize --yaml 24_config.yaml --har yolov8s_pose.har --calib-path train/images/ --end-node-names "/model.23/Sigmoid_1" "/model.23/Concat_4" "/model.23/Mul_3"
hailomz compile --yaml 24_config.yaml --har yolov8s_pose.har --calib-path train/imag
es/ --end-node-names "/model.23/Sigmoid_1" "/model.23/Concat_4" "/model.23/Mul_3"
On the compile step I get this error:
For more context my yaml file is:
base:
- base/yolov8_pose.yaml
network:
network_name: yolov8s_pose
paths:
alls_script: yolov8s_pose.alls
network_path:
- best_320_v2.onnx
url: null
parser:
nodes:
- null
- - output0
info:
task: pose estimation
input_shape: 640x640x3
output_shape: 1x17x8400
#20x20x64, 20x20x1, 20x20x51, 40x40x64, 40x40x1, 40x40x51, 80x80x64,
# 80x80x1, 80x80x51
operations: 30.2G
parameters: 3.08M
framework: pytorch
training_data: /custom_dataset/train/images
validation_data: /custom_dataset/valid/images
eval_metric: mAP
full_precision_result: 96.0
source: https://github.com/ultralytics/ultralytics
license_url: https://github.com/ultralytics/ultralytics/blob/main/LICENSE
license_name: AGPL-3.0
And the .alls file (I gutted most of it):
normalization1 = normalization([0.0, 0.0, 0.0], [255.0, 255.0, 255.0])
post_quantization_optimization(finetune, policy=enabled, learning_rate=0.00015)
I tried this on a model with an input image size of 640x640 as well as 320x320 and still get the same errors.
This is a pretty urgent time sensitive issue so any help would be greatly appreciated. Please let me know if more information is required.