After converting custom model from .pth ->onnx -> .hef model is generating wrong output for same input image

I have custom classification model with 6 classes architecture - resnext50_32x4d I have converted model to onnx and using that onnx converted to .hef using DFC (hailo-dataflow-compiler-3.29.0 , python - 3.10). After inferencing using ONNX model I am getting following expected output - [ 5.7061105 -15.642113 -15.150752 -15.781985 -14.646156 -4.8654194]
hef output - [-12.953751, -12.054185, -13.133664, -14.03323 , -12.234098,13.313578] for same images with same preprocessing steps.
I amusing following code to convert the model let me know if I am missing any step -
import tensorflow as tf
import os
import numpy as np
import cv2
from hailo_sdk_client import ClientRunner

Define model and hardware parameters

chosen_hw_arch = “hailo8l” # Hardware architecture for Hailo8l chip
onnx_model_name = “classification1” # Model name for ONNX model
onnx_path = “classification1.onnx” # Path to ONNX model
hailo_model_har_name = f"./{onnx_model_name}_hailo_model.har"
quantized_model_har_path = f"./{onnx_model_name}_quantized_model.har"
file_name = f"./{onnx_model_name}.hef"

Parse the ONNX model to Hailo format

runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_onnx_model(
onnx_path,
onnx_model_name,
start_node_names=[“Conv_0”], # Input node name
end_node_names=[“Gemm_121”], # Output node name
net_input_shapes={“Conv_0”: [1, 3, 448, 352]}, # Input shape
)
runner.save_har(hailo_model_har_name) # Save the HAR model

Prepare images for model optimization

IMAGES_TO_VISUALIZE = 5
image_dir = ‘./data’ # Folder containing images
image_files = [f for f in os.listdir(image_dir) if f.endswith((‘.png’, ‘.jpg’, ‘.jpeg’))]
images =

Load and preprocess images

for image_file in image_files:
img_path = os.path.join(image_dir, image_file)
img = cv2.imread(img_path)
img_resized = cv2.resize(img, (352, 448)) # Resize to expected input shape
img_rgb = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
images.append(img_rgb)

Convert images list to NumPy array

images_array = np.array(images)

Load and optimize the HAR model

runner = ClientRunner(har=hailo_model_har_name, hw_arch=chosen_hw_arch)
runner.load_model_script(“resnext50_32x4d.alls”) # Load optimization script
runner.optimize(images_array) # Optimize model with sample images
runner.save_har(quantized_model_har_path) # Save quantized HAR model

Compile the quantized HAR model

runner = ClientRunner(har=quantized_model_har_path, hw_arch=chosen_hw_arch)
hef = runner.compile() # Compile model to HEF format

Save the compiled HEF file

with open(file_name, “wb”) as f:
f.write(hef)

print(“Model processing complete. Compiled HEF saved at:”, file_name)

resnext50_32x4d.alls----------------------
normalization = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.375])
pre_quantization_optimization(equalization, policy=disabled)

Hi,
Need to check the results with emulator before checking on HEF. That would help decide if this is an optimization or compilation issue.

How to check results on emulator can you provide me the steps ?