Hi
I’m trying to convert yolov8m and yolov8l custom trained model to HEF but facing issues.
‘.pt’ to ‘.onnx’
from ultralytics import YOLO
Load the YOLO11 model
model = YOLO(“/home/sudhir/Documents/sudhir/runs/detect/jan9/weights/yolov8l_det.pt”)
Export the model to ONNX format
model.export(format=“onnx”, imgsz=640, opset=11)
Error:
[info] No shifts available for layer yolov8l/conv59/conv_op, using max shift instead. delta=0.2450
[info] No shifts available for layer yolov8l/conv57/conv_op, using max shift instead. delta=0.3101
[info] No shifts available for layer yolov8l/conv57/conv_op, using max shift instead. delta=0.1550
[info] No shifts available for layer yolov8l/conv56/conv_op, using max shift instead. delta=0.1112
[info] No shifts available for layer yolov8l/conv56/conv_op, using max shift instead. delta=0.0556
[info] No shifts available for layer yolov8l/conv58/conv_op, using max shift instead. delta=0.2432
[info] No shifts available for layer yolov8l/conv57/conv_op, using max shift instead. delta=0.1550
[info] No shifts available for layer yolov8l/conv56/conv_op, using max shift instead. delta=0.0556
[info] No shifts available for layer yolov8l/conv58/conv_op, using max shift instead. delta=0.1216
[info] No shifts available for layer yolov8l/conv56/conv_op, using max shift instead. delta=0.0556
[info] No shifts available for layer yolov8l/conv58/conv_op, using max shift instead. delta=0.1216
[info] No shifts available for layer yolov8l/conv29/conv_op, using max shift instead. delta=0.4032
[info] No shifts available for layer yolov8l/conv29/conv_op, using max shift instead. delta=0.2016
[info] No shifts available for layer yolov8l/conv43/conv_op, using max shift instead. delta=0.1203
[info] No shifts available for layer yolov8l/conv49/conv_op, using max shift instead. delta=0.5232
[info] No shifts available for layer yolov8l/conv49/conv_op, using max shift instead. delta=0.2616
[info] No shifts available for layer yolov8l/conv48/conv_op, using max shift instead. delta=0.5643
[info] No shifts available for layer yolov8l/conv48/conv_op, using max shift instead. delta=0.2821
[info] No shifts available for layer yolov8l/conv49/conv_op, using max shift instead. delta=0.2616
[info] No shifts available for layer yolov8l/conv56/conv_op, using max shift instead. delta=0.0556
[info] No shifts available for layer yolov8l/conv58/conv_op, using max shift instead. delta=0.1216
[info] No shifts available for layer yolov8l/conv57/conv_op, using max shift instead. delta=0.1550
hailo_model_optimization.acceleras.utils.acceleras_exceptions.NegativeSlopeExponentNonFixable: Quantization failed in layer yolov8l/conv74 due to unsupported required slope. Desired shift is 9.0, but op has only 8 data bits. This error raises when the data or weight range are not balanced. Mostly happens when using random calibration-set/weights, the calibration-set is not normalized properly or batch-normalization was not used during training.
Alls file
normalization1 = normalization([0.0, 0.0, 0.0], [255.0, 255.0, 255.0])
model_optimization_config(calibration, calibset_size=128)
performance_param(compiler_optimization_level=max)
post_quantization_optimization(finetune, policy=enabled, loss_layer_names = [conv97, conv82, conv67, conv25, conv100, conv88, conv73, conv103, conv89, conv74],
loss_types = [l2rel,l2rel,l2rel,l2rel,l2rel,l2rel,l2rel,ce,ce,ce],
loss_factors=[1,1,1,1,2,2,2,2,2,2], epochs = 4, batch_size=2)
model_optimization_flavor(compression_level=0)
change_output_activation(conv74, sigmoid)
change_output_activation(conv89, sigmoid)
change_output_activation(conv103, sigmoid)
nms_postprocess(“…/…/postprocess_config/yolov8l_nms_config.json”, meta_arch=yolov8, engine=cpu)
How can i resolve this