I’m retraining DAMO-YOLO using the damoyolo_tinynasL20_T.py configuration file and the damoyolo_tinynasL20_T_420.pth pretrained weights. The total number of training epochs is set to 300. I’d like to know if there’s a parameter available to enable early stopping, so that training stops automatically if the model’s performance plateaus, or if DAMO-YOLO strictly follows a fixed training schedule, requiring me to wait until all 300 epochs are completed?
Related topics
Topic | Replies | Views | Activity | |
---|---|---|---|---|
Error while training YOLOv8s | 1 | 38 | April 8, 2025 | |
DAMO-YOLO compile errors | 1 | 54 | March 1, 2025 | |
Raspberrie Pi5 AI Kit Yolo OBB | 5 | 203 | March 28, 2025 | |
Emulator SDK_Native Confidence Score Exceeding 100% | 4 | 48 | November 13, 2024 | |
DAMOYOLO inference and postprocessing example | 12 | 160 | May 8, 2025 |